Saving time using AI in CVI workflows

At the **Heart** of **IMAGING**

EACVI SCMR summit on AI

Mirjam Peek

Circle Cardiovascular Imaging About us

Vision

Healthier Lives Through Better Imaging

Mission

Transforming Cardiovascular Imaging Technologies to Better Inform Clinical Decision Making

Circle Cardiovascular Imaging Value proposition

Transforming Cardiovascular Imaging Technologies to Improve patient outcomes

Improve cardiac imaging workflows

Boost clinical decision making

Enhance use of advanced imaging

Circle Cardiovascular Imaging cvi42 Platform

Automated with AI for an Integrated, Best-in-Class Solution

5 Clinical Areas and Multiple Products

Circle Cardiovascular Imaging Trusted by top institutions around the world

Circle Cardiovascular Imaging Performance in Al

Trained CNN automated LV analysis tool performs well compared to manual analysis.

This proves that machine learning algorithms will play an important role in the future of medical image processing.

Trends between human and computer contours demonstrate similar outcomes

 \bigcirc

Deep Learning can reduce contour time.

The machine results demonstrated abilities within the same human range

Golan R, et al. Automatic ventricular segmentation using a convolutional neural network: results from Circle Cardiovascular Imaging on UK Biobank Cardiac MR CINE Images. Poster P290 at SCMR Meet 2018

Circle Cardiovascular Imaging Innovative Al

Accurate

Expert Performance Level

Simple One click

Fast

1 min 30 s < 6 min 15 s

Reproducible

Lower barrier for small centers Less variability within large centers

Cost Efficient

Increasing patient throughput Model validation data:

- Myocardial infarction
- Hypertrophic cardiomyopathy
- Dilated cardiomyopathy
- Ischemic heart disease
- Pulmonary hypertension
- Tetralogy of Fallot
- LVNC

• Golan R, et al. Automatic ventricular segmentation using a convolutional neural network: results from Circle Cardiovascular Imaging on UK Biobank Cardiac MR CINE Images. Poster P290 at SCMR Meet 2018

Werner D, et I. Effect of Machine Learning support on quantification of ventricular function and volumes in untrained residents – is Machine Learning Support ready for prime time? RSNA 2020

Adjusted from Steffen Petersen talk on Utility of Deep Learning in clinical CMR at SCMR 22nd Annual Scientific session

Save Time: CMR Function demo

cvi42.

Save Time: CMR Strain demo

cvi42.

Save Time: CMR Function report

PATIENT INFORMATION

KONA I,EWF II					
Gender	Male	Height (Cm)	177.80	BMI (kg/m²)	27.30
Birthdate	12 Apr 1950 (65 yrs)	Weight (Kg)	86.30	BSA (m ²)	2.06 (Mostel
Heart Rate	74.00				Pormula)

STUDY In Progress

Study Date 12 Jan 2016

GLOBAL LV ASSESSMENT

NAME	VALUE	VALUE / HEIGHT	VALUE / BSA
LVEDV	164 ml [99 - 199]	91.99 ml/m [60 - 120]	79.22 ml/m ² [53 - 97]
LVESV	56 ml [17 - 69]	31.32 ml/m [12 - 44]	26.98 ml/m ² [10 - 34]
LVSV	108 ml [68 - 144]	60.67 ml/m	52.25 ml/m ² [37 - 69]
LVEF	66 % [59 - 83]		
LVCO	8.0 l/min		
LVCI	3.9 l/min/m ² [>= 2.50]		
LV MASS	122 g [74 - 166]	68.88 g/m [47 - 93]	59.32 g/m ² [42 - 78]
HEART RATE	74		
GLOBAL PEAK WALL	THICKNESS 12.16 mm		
METHOD	SAX3D Stack		
MAPSE INFERIOR	15.49 mm		
MAPSE ANTERIOR	10.41 mm		
MAPSE LATERAL	18.46 mm		
MAPSE SEPTAL	9.64 mm		
TAPSE	18.23 mm		
Citations: [1] [2]			

GLOBAL LV ASSESSMENT (CONTINUED)

ID 6.1.4.1.53684.1.1.2.1848725119.4884.1637712119.982

Wall Thickness Systole (mm)

91.4 mm (AHA)

Wall Thickness Systole (mm)

Study Date Jan 12, 2016

14.74 mm

Wall Thickness Diastole (mm) 91.4 mm (AHA)

Wall Thickness Diastole (mm)

GLOBAL RV ASSESSMENT

NAME	VALUE	VALUE / HEIGHT	VALUE / BSA
RVEDV	188 ml [125 - 237]	105.8 ml/m [73 - 141]	91.12 ml/m ² [67 - 111]
RVESV	92 ml [37 - 105]	51.74 ml/m [22 - 66]	44.56 ml/m ² [20 - 48]
RVSV	96 ml [74 - 146]	54.06 ml/m	46.56 ml/m ² [39 - 71]
RVEF	51 % [49 - 73]		
RVCO	7.1 l/min		
RVCI	3.4 l/min		
HEART RATE	74		

Citations: [1] [2]

Patient RSNA 1

ATRIAL ASSESSMENT

NAME	VOLUME	VOLUME / HEIGHT	VOLUME / BSA	AREA
LA Min	29.85 ml	16.79 ml/m	14.46 ml/m ²	
LA Max	74.63 ml	41.97 ml/m	36.15 ml/m ²	
LAEF	60 %			
Method	Biplanar			

Patient RSNA 1 Patient Study Date Jan 12, 2016 ID 6.1.4.1.53684.1.1.2.1848725119.4884.1637712119.982

ATRIAL ASSESSMENT (CONTINUED)

RA Min	33.66 ml	18.93 ml/m	16.3 ml/m ²	12.68 cm ²
RA Max	63.29 ml	35.59 ml/m	30.65 ml/m ²	20.33 cm ²
RAEF	46.82 %			
Method	Monoplan 4CV			

MYOCARDIAL STRAIN

AME	LV	RV
AX Peak Global Circumferential Strain	-20.5 %	
AX Peak Global Longitudinal Strain	-14.7 %	

Citations:

[1] Hudsmith LE, Petersen SE, Francis JM, Robson MD, Neubauer S. Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J Cardiovasc Magn Reson PubMed. 2005; 7:775-782.

[2] Hudsmith LE, Petersen SE, Francis JM, Robson MD, Neubauer S. Height-Indexed Data from Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. Letter. 2006;

42 Release 5.13.8(2517)

Circle

Save Time: LGE Quantification

Automatic Full Stack LGE quantification around 1 minute

Manual Full Stack LGE quantification around 5 minutes

CVi42

Save Time: Mapping

cvi42.

CMR Indication update and Quantitative Perfusion

CMR indications in the 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain

Acute chest pain	Stable chest pain
Class 1: Acute chest pain with no known CAD	Class 1: Stable chest pain with no known CAD
Class 1: Acute chest pain with prior CABG	Class 1: Stable chest pain with obstructive CAD
Class 1: Suspected MINOCA/myopericarditis	Class 2a: Suspected INOCA
Class 2a: Acute chest pain with known CAD	Class 2a: Stable chest pain with prior CABG
Class 2a: Acute chest pain with known valve disease	Class 2a: Stable chest pain and non-obstructive

Circle CVI LVivo[™] Solution - Seamless

Automatic AI-based image selection and analysis for your echocardiology studies

to select the optimal cardiac ultrasound views

Generating Key Clinical Indicators

Ejection Fraction (EF) Global and Segmental LV Strain Right Ventricle Analysis

Thank you Visit our booth! Join our Symposium tomorrow

At the **Heart** of **IMAGING**

EACVI SCMR summit on Al Mirjam Peek maria.peek@circlecvi.com

Al Solutions to Improve Patient Care Friday May 6, 2022 at 12:30-13:30 (BST)

Prof. Sven Plein

Prof. James Moon

Prof. Tim Leiner

Dr. Nicole Seiberlich